An analysis of discontinuous Galerkin methods for elliptic problems
نویسندگان
چکیده
Reinhold Schneider a, , Yuesheng Xu b, and Aihui Zhou c,‡ a Fakultät für Mathematik, Technische Universität Chemnitz, D-09107, Chemnitz, Germany E-mail: [email protected] b Department of Mathematics, Syracuse University, Syracuse, NY 13244, USA, and Academy of Mathematics and System Sciences, Academia Sinica, Beijing 100080, P. R. China E-mail: [email protected] c Institute of Computational Mathematics, and Scientific/Engineering Computing, Academy of Mathematics and System Sciences, Chinese Academy of Sciences, P.O. Box 2719, Beijing 100080, P. R. China E-mail: [email protected]
منابع مشابه
Discontinuous Galerkin Methods for Solving Elliptic Variational Inequalities
We study discontinuous Galerkin methods for solving elliptic variational inequalities, of both the first and second kinds. Analysis of numerous discontinuous Galerkin schemes for elliptic boundary value problems is extended to the variational inequalities. We establish a priori error estimates for the discontinuous Galerkin methods, which reach optimal order for linear elements. Results from so...
متن کاملUnified Analysis of Discontinuous Galerkin Methods for Elliptic Problems
We provide a framework for the analysis of a large class of discontinuous methods for second-order elliptic problems. It allows for the understanding and comparison of most of the discontinuous Galerkin methods that have been proposed over the past three decades for the numerical treatment of elliptic problems.
متن کاملAn Unfitted Discontinuous Galerkin Method Applied to Elliptic Interface Problems
In this article an unfitted Discontinuous Galerkin Method is proposed to discretize elliptic interface problems. The method is based on the Symmetric Interior Penalty Discontinuous Galerkin Method and can also be interpreted as a generalization of the method given in [A. Hansbo, P. Hansbo, An unfitted finite element method based on Nitsche’s method for elliptic interface problems, Comp. Meth. A...
متن کاملAn Analysis of the Embedded Discontinuous Galerkin Method for Second-Order Elliptic Problems
The embedded discontinuous Galerkin methods are obtained from hybridizable discontinuous Galerkin methods by a simple change of the space of the hybrid unknown. In this paper, we consider embedded methods for second-order elliptic problems obtained from hybridizable discontinuous methods by changing the space of the hybrid unknown from discontinuous to continuous functions. This change results ...
متن کاملSolving elliptic eigenvalue problems on polygonal meshes using discontinuous Galerkin composite finite element methods
In this paper we introduce a discontinuous Galerkin method on polygonal meshes. This method arises from the Discontinuous Galerkin Composite Finite Element Method (DGFEM) for source problems on domains with micro-structures. In the context of the present paper, the flexibility of DGFEM is applied to handle polygonal meshes. We prove the a priori convergence of the method for both eigenvalues an...
متن کاملAdaptive Discontinuous Galerkin Methods for Fourth Order Problems
This work is concerned with the derivation of adaptive methods for discontinuous Galerkin approximations of linear fourth order elliptic and parabolic partial differential equations. Adaptive methods are usually based on a posteriori error estimates. To this end, a new residual-based a posteriori error estimator for discontinuous Galerkin approximations to the biharmonic equation with essential...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Adv. Comput. Math.
دوره 25 شماره
صفحات -
تاریخ انتشار 2006